6b

Run Settings
LanguageC
Language Version
Run Command
b) Demonstrate how to build a multiple linear regression using Go. Building a multiple linear regression model involves fitting a linear equation to a set of data points with multiple independent variables to predict the relationship with a dependent variable. Here’s an example Go program that demonstrates how to build a multiple linear regression model using the gradient descent algorithm package main import ( "fmt" ) func main() { Example training dataset x1 := []float64{1, 2, 3, 4, 5} x2 := []float64{0.5, 1, 1.5, 2, 2.5} y := []float64{3, 5, 7, 9, 11} // Train the multiple linear regression model theta0, theta1, theta2 := trainMultipleLinearRegression(x1, x2, y, 0.01, 1000) // Predict using the trained model predicted := predictMultipleLinearRegression(x1, x2, theta0, theta1, theta2) // Display the trained model and predictions fmt.Printf("Trained Model: y = %.2f + %.2fx1 + %.2fx2\n", theta0, theta1, theta2) fmt.Println("Predicted Values:", predicted) } // Function to train a multiple linear regression model using gradient descent func trainMultipleLinearRegression(x1, x2, y []float64, learningRate float64, numIterations int) (float64, float64, float64) { m := len(x1) theta0 := 0.0 theta1 := 0.0 theta2 := 0.0 for i := 0; i < numIterations; i++ { gradient0 := 0.0 gradient1 := 0.0 gradient2 := 0.0 for j := 0; j < m; j++ { predicted := theta0 + theta1*x1[j] + theta2*x2[j] gradient0 += (predicted - y[j]) gradient1 += (predicted - y[j]) * x1[j] gradient2 += (predicted - y[j]) * x2[j] } gradient0 /= float64(m) gradient1 /= float64(m) gradient2 /= float64(m) theta0 -= learningRate * gradient0 theta1 -= learningRate * gradient1 theta2 -= learningRate * gradient2 } return theta0, theta1, theta2 } Function to predict values using a trained multiple linear regression model func predictMultipleLinearRegression(x1, x2 []float64, theta0, theta1, theta2 float64) []float64 { predicted := make([]float64, len(x1)) for i := 0; i < len(x1); i++ { predicted[i] = theta0 + theta1*x1[i] + theta2*x2[i] } return predicted } Note: In this progra
Editor Settings
Theme
Key bindings
Full width
Lines