5

Run Settings
LanguageC
Language Version
Run Command
// C program to insert a node in AVL tree #include<stdio.h> #include<stdlib.h> // An AVL tree node struct Node { int key; struct Node *left; struct Node *right; int height; }; // A utility function to get maximum of two integers int max(int a, int b); // A utility function to get the height of the tree int height(struct Node *N) { if (N == NULL) return 0; return N->height; } // A utility function to get maximum of two integers int max(int a, int b) { return (a > b)? a : b; } /* Helper function that allocates a new node with the given key and NULL left and right pointers. */ struct Node* newNode(int key) { struct Node* node = (struct Node*) malloc(sizeof(struct Node)); node->key = key; node->left = NULL; node->right = NULL; node->height = 1; // new node is initially added at leaf return(node); } // A utility function to right rotate subtree rooted with y // See the diagram given above. struct Node *rightRotate(struct Node *y) { struct Node *x = y->left; struct Node *T2 = x->right; // Perform rotation x->right = y; y->left = T2; // Update heights y->height = max(height(y->left), height(y->right))+1; x->height = max(height(x->left), height(x->right))+1; // Return new root return x; } // A utility function to left rotate subtree rooted with x // See the diagram given above. struct Node *leftRotate(struct Node *x) { struct Node *y = x->right; struct Node *T2 = y->left; // Perform rotation y->left = x; x->right = T2; // Update heights x->height = max(height(x->left), height(x->right))+1; y->height = max(height(y->left), height(y->right))+1; // Return new root return y; } // Get Balance factor of node N int getBalance(struct Node *N) { if (N == NULL) return 0; return height(N->left) - height(N->right); } // Recursive function to insert a key in the subtree rooted // with node and returns the new root of the subtree. struct Node* insert(struct Node* node, int key) { /* 1. Perform the normal BST insertion */ if (node == NULL) return(newNode(key)); if (key < node->key) node->left = insert(node->left, key); else if (key > node->key) node->right = insert(node->right, key); else // Equal keys are not allowed in BST return node; /* 2. Update height of this ancestor node */ node->height = 1 + max(height(node->left), height(node->right)); /* 3. Get the balance factor of this ancestor node to check whether this node became unbalanced */ int balance = getBalance(node); // If this node becomes unbalanced, then // there are 4 cases // Left Left Case if (balance > 1 && key < node->left->key) return rightRotate(node); // Right Right Case if (balance < -1 && key > node->right->key) return leftRotate(node); // Left Right Case if (balance > 1 && key > node->left->key) { node->left = leftRotate(node->left); return rightRotate(node); } // Right Left Case if (balance < -1 && key < node->right->key) { node->right = rightRotate(node->right); return leftRotate(node); } /* return the (unchanged) node pointer */ return node; } // A utility function to print preorder traversal // of the tree. // The function also prints height of every node void preOrder(struct Node *root) { if(root != NULL) { printf("%d ", root->key); preOrder(root->left); preOrder(root->right); } } /* Driver program to test above function*/ int main() { struct Node *root = NULL; /* Constructing tree given in the above figure */ root = insert(root, 10); root = insert(root, 20); root = insert(root, 30); root = insert(root, 40); root = insert(root, 50); root = insert(root, 25); /* The constructed AVL Tree would be 30 / \ 20 40 / \ \ 10 25 50 */ printf("Preorder traversal of the constructed AVL" " tree is \n"); preOrder(root); return 0; }
Editor Settings
Theme
Key bindings
Full width
Lines